Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Toxicol Appl Pharmacol ; 484: 116872, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38428465

RESUMO

Previous studies have demonstrated that tetramethylpyrazine (TMP) can enhance the recovery of motor function in spinal cord injury (SCI) rats. However, the underlying mechanism involved in this therapeutic effect remains to be elucidated. We conducted RNA sequencing with a network pharmacology strategy to predict the targets and mechanism of TMP for SCI. The modified Allen's weight-drop method was used to construct an SCI rat model. The results indicated that the nuclear transfer factor-κB (NF-κB) pathway was identified through the Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, and an inflammatory response was identified through the Gene Ontology (GO) enrichment analysis. Tumor necrosis factor (TNF) was identified as a crucial target. Western blotting revealed that TMP decreased the protein expression of TNF superfamily receptor 1 (TNFR1), inhibitor κB-α (IκB-α), and NF-κB p65 in spinal cord tissues. Enzyme-linked immunosorbent assay (ELISA) and immunohistochemistry (IHC) demonstrated that TMP inhibited TNF-α, interleukin-1ß (IL-1ß), reactive oxygen species (ROS), and malondialdehyde (MDA) expression and enhanced superoxide dismutase (SOD) expression. Histopathological observation and behavior assessments showed that TMP improved morphology and motor function. In conclusion, TMP inhibits inflammatory response and oxidative stress, thereby exerting a neuroprotective effect that may be related to the regulation of the TNFR1/IκB-α/NF-κB p65 signaling pathway.


Assuntos
NF-kappa B , Pirazinas , Traumatismos da Medula Espinal , Animais , Ratos , NF-kappa B/metabolismo , Inibidor de NF-kappaB alfa , Pirazinas/farmacologia , Ratos Sprague-Dawley , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Receptores Tipo I de Fatores de Necrose Tumoral/farmacologia , Receptores Tipo I de Fatores de Necrose Tumoral/uso terapêutico , Medula Espinal , Traumatismos da Medula Espinal/tratamento farmacológico , Traumatismos da Medula Espinal/patologia , Fator de Necrose Tumoral alfa/metabolismo
2.
Inflammopharmacology ; 32(2): 1039-1058, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38153536

RESUMO

BACKGROUND: This study is the first to summarize the evidence on how the use of anti-inflammatory drugs during acute pain has an impact on the development of chronic pain. METHODS: Randomized controlled trials retrieved from nine databases included anti-inflammatory drugs (NSAIDs or steroids) versus non-anti-inflammatory drugs in patients with acute pain and reported the incidence of chronic pain. No specified date, age, sex, or language restrictions. Subgroup analyses were performed according to pain classification, follow-up time, and medication. The GRADE method was used to evaluate quality of evidence. RESULTS: A total of 29 trials (5220 patients) were included. Steroids or NSAIDs did not reduce the incidence of chronic nociceptive pain. Steroid use in acute phase significantly reduced the incidence of chronic neuropathic pain. In subgroup analysis, benefits were observed for methylprednisolone and dexamethasone, with some adverse effects. Steroids or NSAIDs were statistically significant in reducing pain intensity over 1 year, but the effect size was too small, and whether the long-term effect is clinically relevant needs to be further studied. CONCLUSION: Quality of the evidence was low to moderate. No drug can be recommended to prevent chronic nociceptive pain. Injections of steroids (methylprednisolone or dexamethasone) during the acute phase reduce the incidence of chronic neuropathic pain, but most included studies also used local anesthetics. The results are indirect and need to be interpreted with caution. The pooled data effect sizes for pain intensity were small, so the clinical relevance was unclear. Study registration PROSPERO (CRD42022367030).


Assuntos
Dor Aguda , Dor Crônica , Neuralgia , Dor Nociceptiva , Humanos , Anti-Inflamatórios não Esteroides/efeitos adversos , Dor Crônica/tratamento farmacológico , Dor Aguda/tratamento farmacológico , Incidência , Esteroides , Neuralgia/tratamento farmacológico , Neuralgia/epidemiologia , Neuralgia/induzido quimicamente , Metilprednisolona/uso terapêutico , Dor Nociceptiva/tratamento farmacológico , Dexametasona , Ensaios Clínicos Controlados Aleatórios como Assunto
3.
Brain Res Bull ; 205: 110832, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38042503

RESUMO

Oxidative stress (OS) plays a pivotal role in the pathogenesis of spinal cord injury (SCI), yet its underlying mechanisms remain elusive. In this study, we explored the OS phenotype in a rat model of SCI. Subsequently, comprehensive bioinformatic analyses were conducted on microarray data pertaining to SCI (GSE45006). Notably, KEGG enrichment analysis revealed a pronounced enrichment of pivotal pathways, namely MAPK, FoxO, Apoptosis, NF-κB, TNF, HIF-1, and Chemokine across distinct phases of SCI. Furthermore, GO enrichment analysis highlighted the significance of biological processes including response to hypoxia, response to decrease oxygen levels, response to reactive oxygen species, cellular response to oxidative stress, reactive oxygen species metabolic process, and regulation of neuron death in the context of OS following SCI. Notably, our study underscores the prominence of nine genes, namely Itgb1, Itgam, Fn1, Icam1, Cd44, Cxcr4, Ptprc, Tlr4, and Tlr2 as OS key genes in SCI, consistently expressed in both the acute phase (1, 3, 7 days) and sub-acute phase (14 days). Subsequently, the relative mRNA expression of these key genes in different time points (1, 3, 7, 14 days) post-SCI. Finally, leveraging the DsigDB database, we predicted ten potential compounds potentially targeting OS and facilitating the repair of SCI, thus providing novel insights into the mechanisms underlying OS and identifying potential therapeutic targets for SCI.


Assuntos
Traumatismos da Medula Espinal , Ratos , Animais , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio , Traumatismos da Medula Espinal/metabolismo , Estresse Oxidativo/genética , Transdução de Sinais/genética , Medula Espinal/metabolismo
4.
Front Neurosci ; 17: 1242936, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38075277

RESUMO

Objective: This study aimed to investigate the effects of neonatal hypoxic-ischemic brain damage (HIBD) on early-stage neuro-motor function, cerebral blood flow, and the neurovascular unit. Methods: Twenty-four Sprague-Dawley newborn rats aged 7 days were obtained and randomly assigned to either the sham or the model group using a random number table. The HIBD model was established using the Rice-Vannucci method. After the induction of HIBD, the body weight of the rats was measured and their neuro-motor function was assessed. Further, cerebral blood flow perfusion was evaluated using laser speckle flow imaging, and immunofluorescent staining techniques were employed for examining the activation of specific markers and their morphological changes in different cell populations, which included vascular endothelial cells, neurons, astrocytes, and microglia within the motor cortex. Results: After HIBD, the model group exhibited impaired neuro-motor function and growth. Cerebral blood flow perfusion decreased in both the hemispheres on day 1 and in the ipsilateral brain on day 4. However, no significant difference was observed between the two groups on day 7. Moreover, the CD31 and NeuN showed a sharp decline on day 1, which was followed by a gradual increase in the expression levels. The activated microglia and astrocytes formed clusters in the injured cortex. Notably, the regions with positive staining for Arg-1, Iba-1, CD68, and GFAP consistently displayed higher values in the model group as compared to that in the sham group. The total number of branch endpoints and microglia branches was higher in the model group than in the sham group. Immunofluorescent co-localization analysis revealed no co-staining between Iba-1 and Arg-1; however, the Pearson's R-value for the co-localization of Iba-1 and CD68 was higher in the model group, which indicated an increasing trend of co-staining in the model group. Conclusion: Early-stage neuro-motor function, cerebral blood flow, microvasculature, and neurons in neonatal rats exhibited a trend of gradual recovery over time. The activation and upregulation of neuroglial cells continued persistently after HIBD. Furthermore, the impact of HIBD on early-stage neuro-motor function in newborn rats did not synchronize with the activation of neuroglial cells. The recovery of neuro-motor function, microvasculature, and neurons occurred earlier than that of neuroglial cells.

5.
Front Neurosci ; 17: 1168764, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37449274

RESUMO

Background: Spinal cord injury (SCI) is a severe neurological injury for which no effective treatment exists. Granulocyte colony-stimulating factor (G-CSF) is used to treat autologous bone marrow transplantation, chemotherapy-induced granulocytopenia, Acquired Immune Deficiency Syndrome (AIDS), etc. Recent research has revealed the potential application of G-CSF on neuroprotective effectiveness. In central nervous system diseases, G-CSF can be used to alleviate neuronal injury. Objective: To investigate the effects of G-CSF on Basso, Beattie, and Bresnahan (BBB) scale score, inclined plane test, electrophysiologic exam, quantitative analysis of TUNEL-positive cells, and quantitative analysis of glial fibrillary acidic protein (GFAP) immunostaining images in animal models of SCI. Methods: We searched PubMed, Web of Science, and Embase databases for all articles on G-CSF intervention with animal models of SCI reported before November 2022. A total of 20 studies met the inclusion criteria. Results: Results revealed that G-CSF intervention could improve the BBB scale score in both groups at 3, 7, 14, 28, and 35 days [at 35 days, weighted mean differences (WMD) = 2.4, 95% CI: 1.92-2.87, p < 0.00001, I2 = 69%]; inclined plane test score; electrophysiologic exam; quantitative analysis of TUNEL-positive cell numbers; quantitative analysis of GFAP immunostaining images in animal models of SCI. Subgroup analysis revealed that treatment with normal saline, phosphate-buffered saline, and no treatment resulted in significantly different neurological function effectiveness compared to the G-CSF therapy. SD rats and Wistar rats with SCI resulted in significant neurological function effectiveness. C57BL/6 mice showed no difference in the final effect. The T9-T10 or T10 segment injury model and the T8-T9 or T9 segment injury model resulted in significant neurological function effectiveness. The BBB score data showed no clear funnel plot asymmetry. We found no bias in the analysis result (Egger's test, p = 0.42). In our network meta-analysis, the SUCRA ranking showed that 15 mg/kg-20 mg/kg was an optimal dose for long-term efficacy. Conclusion: Our meta-analysis suggests that G-CSF therapy may enhance the recovery of motor activity and have a specific neuroprotective effect in SCI animal models.Systematic review registration: PROSPERO, identifier: CRD42023388315.

6.
Artigo em Inglês | MEDLINE | ID: mdl-32724326

RESUMO

OBJECTIVE: To explore the effect of tuina on the gene expression at the point of nerve injury in rats with sciatic nerve injury (SNI) and to elucidate the repair mechanism of tuina promoting the functional recovery of peripheral nerve injury. METHODS: In the Sham group, the right sciatic nerve was exposed without clamping. The SNI model was established using the sciatic nerve clamp method on the right leg and then randomly divided into the SNI group and the Tuina group. Seven days after modeling, the Tuina group was treated daily with a "massage and tuina manipulation simulator" (Patent No. ZL 2007 0187403.1), which was used daily to stimulate Yinmen (BL37), Yanglingquan (GB34), and Chengshan (BL57) with point-pressing method, plucking method, and kneading method. The stimulating force was 4N, and the stimulating frequency was 60 times per minute; each method and each point were used for 1 minute, totaling 9 minutes (1 min/acupoint/method × 3 methods × 3 acupoints). Treatment was administered for 21 days, followed by a 1-day rest after the 10th treatment, for a total of 20 times of intervention. The sciatic function index (SFI) was used to evaluate the fine movements of the hind limbs of rats in each group. The ultrastructural changes at the point of nerve injury were observed by transmission electron microscopy, and the gene changes at the point of nerve injury were detected using RNA-sequencing (RNA-seq) technology. RESULTS: Compared with the baseline, the SFI of the SNI group and the Tuina group decreased significantly at the 0th intervention (7 days after molding); compared with the SNI group, the SFI of the Tuina group increased at the 10th intervention (P < 0.05) and increased significantly at the 15th and 20th intervention (P < 0.01). Compared with the Sham group, the myelin sheath integrity of the sciatic nerve in the SNI group was destroyed and the myelin sheath collapsed seriously, even forming myelin sheath ball, accompanied with severe axonal atrophy and mitochondrial degeneration. The tuina intervention could significantly improve the ultrastructure of the nerve injury point, and the nerve fiber myelin sheath in the Tuina group remained intact, without obvious axonal swelling or atrophy. Atrophic thread granules could be seen in the axon, but there were no vacuolated mitochondria. RNA-seq results showed that there were differences at 221 genes at the point of nerve injury between the Tuina group and the SNI group and the differentially expressed genes (DEGs) are enriched in the biological processes related to the regulation of myocyte. Regulations include the regulation of striated muscle cell differentiation, myoblast differentiation, and myotube differentiation. CONCLUSION: Tuina can improve the fine motor recovery and protect the myelin integrity in rats with peripheral nerve injury, and this is achieved by changing the gene sequence at the injured point.

7.
Pain Res Manag ; 2020: 7531409, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32587647

RESUMO

Objective: To study the effects of the three methods and three-acupoint technique on DRG gene expression in SNI model rats and to elucidate the molecular mechanism of the three methods and three-acupoint technique on promoting recovery in peripheral nerve injury. Methods: 27 male SD rats were randomly divided into three groups: a Sham group, the SNI group, and the Tuina group. The Tuina group was treated with a tuina manipulation simulator to simulate massage on points, controlling for both quality and quantity. Point-pressing, plucking, and kneading methods were administered quantitatively at Yinmen (BL37), Chengshan (BL57), and Yanglingquan (GB34) points on the affected side once a day, beginning 7 days after modeling. Intervention was applied once a day for 10 days, then 1 day of rest, followed by 10 more days of intervention, totally equaling 20 times of intervention. The effect of the three methods and three-point technique on the recovery of injured rats was evaluated using behavior analysis. RNA sequencing (RNA-Seq) analysis of differentially expressed genes in DRGs of the three groups of rats was also performed. GO and KEGG enrichment was analyzed and verified using real-time PCR. Results: RNA-Seq combined with database information showed that the number of differentially expressed genes in DRG was the largest in the Tuina group compared with the SNI group, totaling 226. GO function is enriched in the positive regulation of cell processes, ion binding, protein binding, neuron, response to pressure, response to metal ions, neuron projection, and other biological processes. GO function is also enriched in the Wnt, IL-17, and MAPK signaling pathways in the KEGG database. PCR results were consistent with those of RNA sequencing, suggesting that the results of transcriptome sequencing were reliable. Conclusion: The three methods and three-acupoint technique can promote the recovery of SNI model rats by altering the gene sequence in DRGs.


Assuntos
Pontos de Acupuntura , Grupos Diagnósticos Relacionados , Medicina Tradicional Chinesa , Traumatismos dos Nervos Periféricos , Terapia de Tecidos Moles , Animais , Masculino , Medicina Tradicional Chinesa/métodos , Ratos , Ratos Sprague-Dawley , Nervo Isquiático/lesões , Análise de Sequência de RNA , Terapia de Tecidos Moles/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...